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Abstract

This report is a user's manual for the TRAINS-95 parsing system. An accompanying report
describes the grammar used in TRAINS-95, and the robust speech act interpretation system, which
takes the chart and produces a series of speech acts that best characterize it.

The parser is based on the bottom-up parser described in Natural Language Understanding,
Second Ed. (Allen, 1994, Chapters 3, 4, and 5). It uses the same formats for the grammar and the
lexical entries, and the same basic bottom-up algorithm. There are a number of extensions beyond
the basic system described in the book, each of which will be discussed in this report, including

« support for parsing word lattices

* best-first parsing using context-free probabilistic rules

* incremental (word by word) parser with backup for corrections

* hierarchical feature values and extended unification options

* a hierarchical lexicon entry format that simplifies defining large lexicons
* procedural attachment to Chart actions

1 This research was supported in part by ONR/ARPA research grant no. N00014-92-J-1512. Thanks to Mark Core,
Aaron Kaplan, and Drew Simchik for work on the parser at various stages of its development.
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1 The Format of Constituents and Grammatical Rules

In all input and output interactions, constituents are represented as a list starting with the syntactic
category of the constituent, followed by an-arbitrary number of feature value pairs. For example,
here is an NP constituent with an AGR feature 3s, and a SEM feature CONTAINER:

(NP (AGR 3s) (SEM CONTAINER))

Feature values may be LISP atoms?, embedded constituents, variables, or constrained variables. A
variable can be written in several different forms:

7<atomic name> - an unconstrained variable (e.g., ?A), which will match any value;

(? <atomic name>) - syntactic variant of a simple variable (e.g., ?A);

(? <atomic name> <vall> ... <valn>) - a variable constrained to be one of the indicated values

(e.g.,(? A3s3p);
?!<atomic name> - a variable that matches anything but the empty value “~” (e.g., ?!A).

A special construction allows constituents to be values, and is of the form
(% <cat> (<feat> <val>)*).

For example, here is a VP constituent with an NP constituent with AGR value 3s as the value of
the SUBJ feature:

(VP (AGR 35) (SUBJ (% NP (AGR 3s)))).

Note if you omitted the % in this example, then the value of the SUBJ feature would be 1nterpreted
simply as a list structure and not as an embedded constituent.

The basic syntax for a grammatical rule is
(<lhs constit> <rule id> <rhs constit 1> ... <rhs constit n>)

Constituents on the right hand side of a rule may be designated as head constituents by enclosing
them in a list with the first element being the atom head. The treatment of head features is discussed
in section 2.
For example, the following is a rule for a sentence-level constituent S:
((s (agr 72))
-1>

(np (agr 72))

(head (vp (agr 7a)))
This rule has as its left hand side an S constituent with the AGR feature being the variable ?7a, a rule
identifier of -1>, and two constituents on the right hand side: an NP and a VP, both with an AGR
feature that must unify with the AGR feature in the S constituent. The VP is the head constituent.

Rules may also have weights associated with them, and the parser uses a best-first search strategy
to build constituents using the rules with the highest weights first. This allows the user to define

2 In fact, any LISP data structure can be used as a value. The only operation used by the parser on values, however,
is EQ. Thus everything looks like an atom to the parser.




context-free probabilistic grammars as described in Natural Language Understanding (Allen,
1994). Weights do not have to follow the laws of probability, however. The user may specify any
weights they wish on rules in order to affect the search. The weight for a rule is indicated
immediately following the rule ID. If not specified, the weight of a rule is set to a default value,
which is initially set to 1.0. This can be changed by the user as described in Section 3. Here's rule
-1-> again, this time specified to have a weight of .5.
((s (agr 72))
-1> .5
(np (agr 72))
(head (vp (agr 72)))
Rules may contain a variable as a constituent on the right hand side. This is useful for allowing
subcategorization information in the feature system. For example, here is a rule that will work for
any verb that takes a single constituent complement (assuming the lexicon is defined appropriately)
((vp)
-vpl>
(head (v (subcat 7c)))
)
With such a rule, simple transitive verbs would have to have the SUBCAT value (% NP) in the
lexicon.

2 Defining Grammars

A grammar is a list of rules, together with a prefix that indicates what input format is being used.
The rules above are in what is called "cat format", where the CAT feature is not explicitly present.
For example, here is a small grammar in CAT format.

(setq *testGrammarl*
‘(cat
((s (agr 7a)) -1-> (np (agr 7a)) (vp (agr 7a)))
((np (agr ?2)) -2-> (art (agr 72)) (n (agr %2)))
((vp (agr 7a) (vform ?v)) -3-> (v (agr ?a) (vform ?v) (subcat _none)))
((vp (agr 7a) (vform ?)) -4->
(v (agr 7a) (vform ?7v) (subcat _np)) (np))))

Using Head Features

A head feature captures a constraint between the values of the mother constituent to its head
subconstituents (see Allen, 1994). Head features can be defined for a set of rules, and are very
useful for abbreviating rules with large numbers of systematically defined features. If head feature
format is used in a grammar, every rule should have at least one head subconstituent on the left
hand side. In this parser, head features are local to specific categories rather than being global to
the grammar (say, as in GPSG). Since the overall grammar is defined incrementally from a set of
smaller grammars, the head features are not global to the final grammar. Rather, they are local to
each cluster of rules defined. The head features for a grammar are specified using the form

(Head features (<cat]> <feat] 1> ... <feat] ;m>) ...(<catp> <featy 1> ... <featp k>)).

For example, here is the same grammar as *testGrammarl* above, but in head feature format




(setq *testGrammar2*
'((head features (vp vform agr) (np agr))
((s (agr 7a)) -1-> (np (agr 7)) (head (vp (agr 7a))))
((np) -2-> (art (agr 7a)) (head (n (agr 7a))))
((vp) -3-> (head (v (subcat _none))))
((vp) -4-> (head (v (subcat _np))) (np))))

These two grammars would generate exactly the same grammar in the internal format.

Foot Features

A foot feature moves feature values from any subconstituent to the mother (see Allen, 1994). Foot
features can only be defined globally at the present time, so using them adds significant overhead
to a large grammar. Unlike head features, which are a notational convenience, the behavior of foot
features cannot easily be captured in the standard grammar format. When a feature F is defined as a
foot feature, then whenever a rule is used, if one of the subconstituents has a value for F, then that
value is passed on to the mother constituent. If two subconstituents define a value for feature F,
then the values must unify. Foot features are needed to define the behavior of the feature WH,
which indicates if a constituent contains a wh-term.

(define-foot-feature <feature name>) ,
This defines the feature name as a foot feature globally throughout the grammar. For
example, the WH feature is defined as a foot feature by (define-foot-feature ‘WH).

Declaring Lexical Categories

For improved tracing and the handling of gaps, you need to declare all lexical categories. If you
don’t use the gap feature, declaring the lexical categories is not essential. The following categories
are preset by the system:

n noun p preposition pp-wrd words that function
v verb aux auxiliary verb like pp phrases

adj adjective pro pronoun name proper name

art article gdet question determiner to the word “to”

Additional lexical categories are defined as follows:

(defineLexicalCategories <list of categories>)
This defines the lexical categories to be the list specified.

(addLexicalCat <category name>)
This adds the indicated lexical categories to the current list of lexical categories.

Lexical Entries

A lexicon consists of a list of word entries of form
(<word> <constit>)

where the constit is in abbreviated format as described above. Here's a sample lexicon




(setq *Lexicon1*
'((dog (n (agr 3s) (root dog)))
(dogs (n (agr 3p) (root dog)))
(pizza (n (agr 3s) (root pizza)))
(saw (v (agr ?al) (vform past) (subcat _np) (root see)))
(barks (v (agr 3s) (vform pres) (subcat _none) (root bark)))
(the (art (agr 3s) (root the)))))

3 Loading and Accessing the Grammar and Lexicon

The following functions are provided to define which grammars and lexicons are to be used by the
parser. These functions convert the input formats into the internal formats. For defining the
grammar, there are two functions. One redefines the active grammar to a new grammar while the
other adds additional rules to the active grammar.

(make-grammar <grammar spec>)
This defines the active grammar to the specified grammar.

(augment-grammar <grammar spec>)
This adds the rules in the specified grammar to the active grammar.

There are two functions for accessing the active grammar:

(get-grammar)
This returns the complete active grammar

(show-grammar <optional rule id> ... <optional-rule-id>)
This prints the rules with the indicated rule IDs. For example,

(show-grammar '-sl-> '-vp->)
would print out all rules with the ID -s1-> or -vp1>. If no IDs are specified, the entire

grammar is printed out.
For the lexicon, a similar pair of functions is provided.

(make-lexicon <list of lexical entries>)
This defines the active lexicon to be the specified lexical entries.

(augment-lexicon <list of lexical entries>)
This adds the lexical entries to the active lexicon

There are several functions for accessing the active lexicon

(worddef <word>)
This returns all the lexical entries for the indicated word, e.g., (worddef ‘to) returns all

the entries for TO.

(get-lexicon)
This returns the complete active lexicon

(get-defined-words)
This returns a list of all the words that are defined in the lexicon.




Setting the Default Rule Probability

If you want to change the default rule probability from 1.0, you may do so using the following
function. Note that this default is used when the rules are added to the active grammar. So different
defaults could be used for different sections of the grammar if they are added separately.

(Set-Default-Rule-Probability <number>)
Sets the default rule probability to the indicated number. While meaningful probabilities

must fall between 0 and 1, the parser actually accepts any numbers the user wishes to
define as it does not depend on the laws of probability in any of its calculations.

4 Running the Online Parser

The parser is called using two functions, each taking a list of atoms (i.e., the words) as its
argument, e.g.,

(start-BU-parse <list of words>)
This initiates a new parse starting with the indicated words (e.g.,
(start-BU~parser ‘(the dog)))

(continue-BU-parse <list of words>)
This continues the parse with the indicated words(e.g., calling

(continue-BU-parse' (ate the pizza))
after
(start-BU-parser ‘(the dog)))
will produce the chart for the sentence “the dog ate the pizza”.

A useful facility is provided that takes string input and expands contractions and punctuation:

(Tokenize <sentence as a string>)

This expands contractions and converts punctuation in a string into a list of atoms for the
parser. For example, the string “I don’t know Avon’s size.” returns the list ( DO NOT
KNOW AVON AS SIZE PUNC-PERIOD). Table 1 gives example of the expansions that
Tokenize handles.

Punctuation is mapped in special symbols: PUNC-PERIOD (“.”), PUNC-COLON (*“:”), PUNC-
SEMICOLON (*;”), PUNC-COMMA (“,”), PUNC-QUESTION-MARK (“?”), PUNC-
EXCLAMATION-MARK (“!”).

Lattice-Based Parsing

The parser also supports a generalized input format that allows it to parse word lattices and other
structures. When calling the parser, you may use the following format in place of a single atom
presenting a word: -

(<word atom> <optional modifiers>)

where the optional modifiers are indicated in keyword format




Abbreviation Example Result
Regular n’t forms don’t DO NOT
Regular ‘1l forms you’ll YOU WILL
Regular ‘d forms I'd I WOULD
Regular ‘re forms you’re YOU ARE
Regular ‘ve forms we’ve WE HAVE
Possessives ‘s George’s GEORGE AS
Possessives engines’ ENGINE A
Significant blank I_want I WANT
o’clock o’clock OCLOCK
Contraction I'm 1AM
Contraction Let’s LET US

Table 1: Summary of expansions performed by the function Tokenize

:start <start position> - indicates the starting position of the word. Default is the next
position in the input

:end <end position> - indicates the ending position of the word. Defaults to the start
position plus one

:prob <number> - indicates the “probabilistic” weight of the word. Defaults to 1.0

filter <constit spec> - indicates the syntactic category and necessary features of the word
entry. Only those lexicon entries that unify with this filter are used. If not specified, all
entries in the lexicon are used. If the constit spec is an atom, it specifies the syntactic
category required. If the constit-spec is a list, it must be of the form (<cat> (<feat>
<val>)*), as in (NAME (SEM CITY)).

For example, given the input item (ate :start 3 :prob .5),the parser would look up all
lexical entries for ATE and create entries from position 3 to 4 for each with probability .5. Given
the input item (run :start 4 :filter NOUN),the parser would only use lexical entries for
RUN that are nouns. Given (Toledo :start 5 :end 8 :filter (NAME (SEM CITY))),the
parser would only use lexical entries for TOLEDO that are names with SeM feature c1TY, and each
constituent spans from position 5 to 8. '

The input formats may be mixed, and the parser keeps track of the current position throughout,
updating thi$ position only when entries are given that do not specify a start position and the
default start position is used. For instance, consider the input sequence

(GO TO TO LEAVE OH (TOLEDO :start 3 :end 6) AND WAIT)




This would create entries for GO from 1 to 2, TO from 2 to 3 and from 3 to 4, LEAVE from 4 to
5, OH from 5 to 6, TOLEDO from 3 to 6, AND from 6 to 7 and WAIT from 7 to 8. Exactly the

same interpretation would be given to the input sequence
(GO TO (TOLEDO :start 3 :end 6) TO LEAVE OH AND WAIT).

Backing Up
Backing up the parser is simple.

(backup <number>)

This causes the parser to back up the indicated number of words. The resulting state is
exactly the same as the parser was in before the words that were backed over were ever
entered. Warnings: if you use string input with tokenization, remember that contractions are
expanded into multiple words, all of which must be counted. If you want to back over the
input word “can’t”, this will require backing over two words: CAN and NOT. Also, if you
have words that span multiple positions, they will be deleted if any part of them is backed
over.

Setting the Maximum Chart Size

The function ContinueUtterance can be called as long as you wish, until the chart exceeds its
maximum size. The max chart size can be found by calling (GetMaxChartSize), and the default size
is 40 constituents. You may change this by calling SetMaxChartSize, e.g., (SetMaxChartSize 50).

5 Tracing and Other Control Options

Global Tracing

There are two global levels of tracing provided:

(traceon)
This causes a trace message as each constituent is added to the chart

(verboseon)
This causes a trace message of each arc extension as well.

(verboseoff)
This stops the extended tracing

(traceoff)
This disables all tracing

Specific Tracing

You can trace all activity of a single rule in the grammar, which causes a message to be printed
whenever it is extended and when it is completed and adds a constituent to the chart.




(trace-rule <rule-id> ... <opt-rule-id>)
This traces all rules that have the indicated identifier (e.g., (trace-rule ‘-1->) causesa
trace message whenever rule -1-> is extended or is completed). You may trace as many

rules simultaneously as you want. To disable individual tracing, you have to use (traceoff).

The default trace message prints all features in every constituent. You can change this by
specifying which features you would like to see.

(set-trace-features <list of feature names>)
This will cause all trace messages to only print the indicated features. If the argument is T,

then all features are printed. If it is NIL, then no features are printed.

Setting a Break Point

You can set a single break point, where the parser will stop when it adds a constituent that matches
an indicated pattern to the chart.

(break-on <constit>)
This sets the parser to stop when a constituent is found that unifies with the constituent

specified. For example,

(break-on (% S (STYPE (? x DECL YNQ)))
would cause the parse to stop when it finds an S constituent with the STYPE feature being
DECL or YNQ. The parser retains all its state, so you can continue a parse after stopping it
simply by calling (Continue-BU-parse nil).To turn off the break point, simply call
break-on with nil as an argument.

6 Accessing the Chart
There are several ways to access the chart built from the last parse:

(show-chart <opt-feat-list> <opt-start-index> <opt-end-index>)

This prints out the complete chart, showing all chart entries as they were built bottom-up. If
the <optional feature list> is specified, only the features mentioned are printed. If it is the
value T, all features are printed. If the <optional start index> and <optional end index> are
specified, then only the constituents between these positions are printed. If the starting
position is specified and the end position omitted, all constituents after the starting position

are printed. Consider the examples:
(show-chart “(LEX LF)) - display entire chart showing only LEX and LF features
(show-chart ‘(LEX LF) 3) - display entire chart from position 3 to end showing only LEX

and LF features
(show-chart t 3 6) - show chart between positions 3 and 6, showing all features.

(show-best <opt-feat-list> <opt-start-index> <opt-end-index>) v

This prints out only the chart entries that span the complete input between the specified
indices, or the entire sentence if the indices are not specified. If no constituent spans the
entire utterance, this prints the smallest sequence of constituents that cover the entire
sentence. See discussion of show-chart above for interpretation of defaults for parameters.




(show-answers <opt-feature-list> <opt-start-index> <opt-end-index>) '
This prints out the complete parse tree rooted at each of the constituents found in show-
best. This function binds all the variables in the subconstituents as it prints giving a better
view of the overall parse tree than the full chart where the constituents are shown as they
were defined bottom-up.

(show-constit <constituent-name> <opt-feat-list>)
This prints out the complete parse tree rooted at the indicated constituent. If the optional
feature list is specified, then only those features are printed.

7 Handling Gaps

The system supports a basic facility for automatically propagating GAP features and inserting gaps
at appropriate locations during the parse. There are functions to enable and disable gap processing.
Note that gap processing must be enabled before a grammar is loaded so that the GAP feature is
inserted in the rules.

(enableGaps)
This enables gap processing.

(disableGaps)
This disables gap processing.

When gap processing is enabled, the GAP feature is added to rules when they are defined, as
described in Natural Language Understanding, 2nd ed. Basically, gaps propagate from mother
constituent to their head constituent when they are non-lexical, and to the other subconstituents
when the head constituent is a lexical constituent.

Since this is a bottom-up parser, some effort has to be made to restrict the arbitrary bottom-up
insertion of gaps. To help in this, the user must declare what constituents can participate in gaps.
For each constituent type that you wish to participate as gaps, you must call the following function:

(declare-gap-cat <category name> <list of features>)

This declares that the category will be used in GAPs, and the indicate list of features are all
the features that will be relevant for unification with these gaps. This defaults just to NP
constituents with features AGR, CASE and SEM.

(reset-gap-cats)
Removes all previous declarations concerning categories that can participate in gaps.

Rules that introduce gaps specify the constituent needed using an embedded constituent as the
value of the GAP feature. For example, here is a rule for WH questions, which consist of an NP
with the WH feature Q, followed by an inverted S with the GAP feature value (% np (agr
7a)). Note that the AGR feature of the gap must agree with the AGR feature of the WH NP.
®
-5-8-3>
(np (wh q) (gap -) (agr ?2))
(head (s (inv +) (gap (% np (agr 7a))))))




8 Debugging Grammars

One nice feature of bottom up algorithms is that they allow for some effective debugging strategies.
If you find that a sequence of words doesn't parse how you think it should, try each of the
constituents one at a time and see what the parser produces. If you don't get the right analysis, then
try additional subparts of the sentence until you find the answer. For example, say you try

(start-bu-parse '(the angry man ate the pizza))

and it doesn't produce a complete interpretation. You might then try
(start-bu-parse '(the angry man))

and see if this produces an appropriate NP analysis. Say it does. Then try
(start-bu-parse '(ate the pizza))

ands see if this produces the appropriate VP analysis. If it doesn't, then there's probably a problem
with your VP -> V NP rule, or your lexical entry for "ate". If it does produce the right
interpretation, then the problem must be with your S -> NP VP rule (e.g., maybe the rule is
missing, or maybe a feature equation is wrong, etc.).

You can also inspect the chart after each word is entered by simply calling the parser incrementally
one word at a time and then using the standard chart access functions.

9 Hierarchical Features

The parser supports hierarchical features, where the values are defined in a hierarchy, and two
values unify if one is a specialization of the other. Features that use hierarchical values must be

declared. : '

(declare-hierarchical-features <list of features>).
This declares the indicated features as having hierarchical values. For instance,

declare-hierarchical-features ‘(SEM AGR))
would declare that only SEM and AGR features take hierarchical values.

The unifier is generalized for hierarchical features so that two values match if one is a specialization
of the other according to a pre-defined type hierarchy. This hierarchy is a tree that is declared in a
simple list format. Before you can define an actual hierarchy, you must initialize the hierarchy
structure:

(init-type-hierarchy)
This initializes the type hierarchy, clearing it if it was previously defined.

(compile-hierarchy <tree in lisp form>)

This extends the existing type hierarchy (or empty hierarchy) with the hierarchical
relationships specified as the argument.

For example, the call

10




value needed for rule | value in chart result

FIXED-OBJ CITY success, since a CITY is a FIXED-OBJ

cITY FIXED-OBJ fail, since a FIXED-OBJ is not necessarily a CITY

(? d FIXED-OBJ) ciTY success, ?d bound to CITY

(? d FIXED-OBJ) (? e CITY) success, 7d bound to (? e CITY)

(2dCITY) (? e FIXED-OBJ) fail

(?d CITY COMMODITY) | CONTAINER success, 7d bound to (? f COMMODITY)

(?d CITY COMMODITY) | (? e CITY CONTAINER) | success, ?d and ?e bound to (? f CITY COMMODITY)

Table 2: Examples of feature unification with hierarchical values

(compile-hierarchy
‘(PHYS-OBJ
(FIXED-OBJ
(CITY)

(LAKE)
(COUNTRY)

(RIVER))
(MOVABLE-OBJ
(COMMODITY
(LIQUID-COMMODITY)
(SOLID-COMMODITY)
(CONTAINER))

)
would define the hierarchy as indicated by the list structure.

Note that in matching hierarchical features, the matching process is not symmetric between the
constituent being sought for a rule, and the constituent being matched against in the chart. If a rule
needs a constituent with a SEM feature of FIXED-OBJ, then it can unify with an existing
constituent with a SEM feature that is a specialization of FIXED-OBJ, such as CITY. But if a rule
needs a constituent with a SEM feature of CITY, it will not unify with an existing constituent with
SEM FIXED-OBJ, because not all FIXED-OBJs are necessarily CITYs. This is exactly parallel to
the use of type hierarchies in knowledge representation systems, where the constituent being
sought for the rule is the goal, and the chart is the knowledge base. Given the hierarchy above,
Table 2 shows some results of unifying various values. Note that in the last two examples, a new
variable is created as the substitution as it draws information from both the value needed and the
value in the chart.

10 Enhanced Lexicon Input Capabilities

The parser provides a facility that allows lexicons to be specified in hierarchies with inheritance of
features, and which can automatically generate lexical variants (such as plural forms of nouns and
the regular verb forms). It also inserts default values for the features LEX, LF and VAR, and other

11




features related to morphological variants of verbs, namely AGR, and VFORM. A function expand
is provided that takes a hierarchical specification and generates the standard input format for each

entry.
Defining a Hierarchical Lexicon

A hierarchical lexicon is a tree of partial lexical entries, where each leaf node inherits feature values
from its ancestor nodes. When multiple values for a feature are defined in the ancestors, the value
declared closest to the leaf node (or at the leaf node) is used. The tree is specified as a list structure
consisting of nodes and leaf nodes. A node is of the form

(:node <list of feature specs> <list of subnodes>)
and a leaf node is specified as

(:leaf <lexical item> <list of feature specs>).
The following default values are added for features if they are not specified:

LEX - set to the word .
LF - set to the base form of the word
VAR - Set to a new variable

Additional entries are created based on the MORPH feature as follows:

669

-S-3p - create a plural form by adding an “‘s”, set AGR to 3p

-vb - create the different verb forms using regular morphology, i.e.,
add “s” foraGr 3s
add “ing” for VFORM ING
add “ed” for VFORM PAST and PASTPART

To invoke the enhanced lexical entry facility, use the following function:

(expand <category> <node>)
This creates a list of lexical entries of the indicated category as defined by the tree rooted at

the specified node. This includes generating morphological variants as defined by the
MORPH feature. The entries can be added to the lexicon by mapping make-lex over the result.

For example, here is a small tree defining a few lexical entries.

(expand
‘(:node
((AGR 3s) (MORPH -S-3P) (ARGSEM PHYS-OBJ)) ;; the feature values
((:node ;; first subnode
((SEM WEIGHT))
((:leaf ton)
(:leaf pound)

)
(:leaf gallon (SEM VOLUME) (ARGSEM LIQUID)) ;; second subnode

»)
This returns the following lexical entries
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Root Suffix Action Example
ends in “Cy” “s” replace “‘y” with “ie” cities
ends in “Cy” “ed” replace “y” with “i” carried
ends in “e” begins with “e” drop final “e” cared
ends in “h”, “s” or “x” “g” insert “e” finishes
ends in “Vb”, “Vg” or “Vp” | begins with “1” or “e” | double final letter bagged

Table 3: Simple morphological variants

((ton (LEX ton) (LF ton) (VAR V11) (AGR 3s) (MORPH -S-3p) (ARGSEM PHYS-OBJ) (SEM

WEIGHT))

(tons (LEX tons) (LF ton) (VAR V12) (AGR 3p) (MORPH -S-3p) (ARGSEM PHYS-OBJ) (SEM
WEIGHT))

(pound (LEX pound) (LF pound) (VAR V13) (AGR 3s) (MORPH -S-3p) (ARGSEM PHYS-OBJ) (SEM
WEIGHT))

(pounds (LEX pounds) (LF pound) (VAR V14) (AGR 3p) (MORPH -S-3p) (ARGSEM PHYS-OBJ) (SEM
WEIGHT))

(gallon (LEX gallon) (LF gallon) (VAR 15) (AGR 3s) (MORPH -S-3p) (ARGSEM LIQUID) (SEM
VOLUME))

(gallons (LEX gallons) (LF gallon) (VAR 16) (AGR 3p) (MORPH -S-3p) (ARGSEM LIQUID) (SEM
VOLUME)))

Morphological Variants

The morphological expansion handles simple variants as shown in table 3, where C is any
consonant and V any vowel. Note that these are not hard and fast rules. The automatic derivations
are a matter of convenience only. Words that do not follow the general rules must be marked as
exceptions.

Morphological derivations are triggered by the MORPH features. So one way to deal with
exceptions is to omit the relevant MORPH feature and define the entries by hand. For example, the
entry for the word plenty, which has no plural form, would not have the MORPH feature -S-3P
and thus the variant “plenties” would not be constructed. Similarly, irregular verbs could be
defined by not adding the -vb MORPH feature and defining each entry by hand. There are enough
irregular verb forms, however, that this would be quite cumbersome, so an additional mechanism
is provided. A table of verb exceptions is defined that is checked for any entry with the MORPH
feature -VB. This table may list any irregular forms of the verb. The format of an entry in this table
is

(<root form> <vb-feature>{ <form>1 ... <vb-feature>p <form>p).

For example, the entry
(bring :past brought)
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indicates that bring has an irregular past form “brought”, but the 3s form (brings) and the ing form
(bringing) are formed regularly. Unless explicitly indicated, the pastpart form is always taken to be
identical to the past form, so the pastpart form here is “brought”. An example where the past and
pastpart differ is “come”

(come :past came :pastpart come).

To define exceptions, you call the function

(init-verb-exception-table <list of entries>)
This function defines the set of verbs which have at least one form that is not derivable by

the standard methods, e.g.,
(init-verb-exception-table
‘(" (come :past came :pastpart come)

(bring :past brought))) :
would define entries for “come” and “bring”.

11 Procedural Attachment

This parser also allows you to attach arbitrary LISP procedures to the parser. You declare
constituent patterns using the ANNOUNCE function, and whenever a constituent is about to be
added that matches the pattern, your function is called first. You may then modify the constituent
and return it back to the parser. The constituent patterns use the same format as in specifying
grammars. Here is an example function that traps all complete NPs, prints them out, and adds a
new binary feature, +SEEN.

(announce '(np (gap -)) #'testfn)

(defun testfn (entry)

(Format t "~% Found the NP: ~s~%" entry)

(setFvalue entry 'SEEN '+)
:: must return the entry if it is to be added to the chart

gntry)
Note that if you subsequently edit the definition of TEST, you may need to clear the old
announcements and make a new one. The function INIT-ATTACHMENTS removes all previous

announced patterns, €.g.,

(init-attachments)

(announce '(np (gap -)) #'testfn)
In general, you will have to dig into the code if you want to modify parts of a constituent. But here
are a few of the more common functions.

(GetFvalue <entry> <featurename>)
This returns a feature value, e.g., (getFvalue entry 'SEEN) would return the value of the

feature SEEN.

(SetFvalue <entry> <featurename> <value>)
This sets a feature value, e.g., (setFvalue entry 'SEEN '+) sets the feature value SEEN to +

(SetProbValue <entry> <number>)
This sets the probability of the entry, e.g., (setProbValue entry .5) sets the probability to .5.
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Note that if you reduce the probability of a constituent so that it is not now the highest ranked
constituent on the agenda, it will be placed back onto the agenda to be added to the chart later. This
means you will see the same constituent again if it returns to the top of the stack.

If you want to stop the parser from within an attached function, call the function:

(suspendParse) .

This will cause the parser to stop after it processes the current entry. In other words, if
your function returns the entry, it is added to the chart or back to the agenda as normal, and
then the parser stops. The parser can be resumed simply by calling continue-BU-parse with
nil as an argument since the agenda is not cleared.

12 Obtaining the System

The parser is available via anonymous ftp from ftp.cs.rochester.edu in the directory
pub/u/james/parser-935.
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